Biology

Biology, the science of life. The term was introduced in Germany in 1800 and popularized by the French naturalist Jean-Baptiste de Lamarck as a means of encompassing the growing number of disciplines involved with the study of living forms. The unifying concept of biology received its greatest stimulus from the English zoologist Thomas Henry Huxley, who was also an important educator. Huxley insisted that the conventional segregation of zoology and botany was intellectually meaningless and that all living things should be studied in an integrated way. Huxley’s approach to the study of biology is even more cogent today, because scientists now realize that many lower organisms are neither plants nor animals (see Prokaryote; Protista). The limits of the science, however, have always been difficult to determine, and as the scope of biology has shifted over the years, its subject areas have been changed and reorganized. Today biology is subdivided into hierarchies based on the molecule, the cell, the organism, and the population.

Molecular biology, which spans biophysics and biochemistry, has made the most fundamental contributions to modern biology. Much is now known about the structure and action of nucleic acids and protein, the key molecules of all living matter. The discovery of the mechanism of heredity was a major breakthrough in modern science. Another important advance was in understanding how molecules conduct metabolism, that is, how they process the energy needed to sustain life.

Cellular biology is closely linked with molecular biology. To understand the functions of the cell—the basic structural unit of living matter—cell biologists study its components on the molecular level. Organismal biology, in turn, is related to cellular biology, because the life functions of multicellular organisms are governed by the activities and interactions of their cellular components. The study of organisms includes their growth and development (developmental biology) and how they function (physiology). Particularly important are investigations of the brain and nervous system (neurophysiology) and animal behavior (ethology).

Population biology became firmly established as a major subdivision of biological studies in the 1970s. Central to this field is evolutionary biology, in which the contributions of Charles Darwin have been fully appreciated after a long period of neglect. Population genetics, the study of gene changes in populations, and ecology, the study of populations in their natural habitats, have been established subject areas since the 1930s. These two fields were combined in the 1960s to form a rapidly developing new discipline often called, simply, population biology. Closely associated is a new development in animal-behavior studies called sociobiology, which focuses on the genetic contribution to social interactions among animal populations.

Biology also includes the study of humans at the molecular, cellular, and organismal levels. If the focus of investigation is the application of biological knowledge to human health, the study is often termed biomedicine. Human populations are by convention not considered within the province of biology; instead, they are the subject of anthropology and the various social sciences. The boundaries and subdivisions of biology, however, are as fluid today as they have always been, and further shifts may be expected.

See Animal; Animal Behavior; Botany; Cell; Classification; Development; Ecology; Evolution; Genetics; Heredity; Life; Medicine; Metabolism; Plant; Reproduction; Respiration; Zoology.

Comments

Popular posts from this blog

Hanaoka Seishu

Modern Agriculture

Brahe, Tycho