Showing posts with label Electronics: Transistors. Show all posts
Showing posts with label Electronics: Transistors. Show all posts

Electronics


Transistors are made from semiconductors. These are materials, such as silicon or germanium, that are “doped” (have minute amounts of foreign elements added) so that either an abundance or a lack of free electrons exists. In the former case, the semiconductor is called n-type, and in the latter case, p-type. By combining n-type and p-type materials, a diode can be produced. When this diode is connected to a battery so that the p-type material is positive and the n-type negative, electrons are repelled from the negative battery terminal and pass unimpeded to the p-region, which lacks electrons. With battery reversed, the electrons arriving in the p-material can pass only with difficulty to the n-material, which is already filled with free electrons, and the current is almost zero.

The bipolar transistor was invented in 1948 as a replacement for the triode vacuum tube. It consists of three layers of doped material, forming two p-n (bipolar) junctions with configurations of p-n-p or n-p-n. One junction is connected to a battery so as to allow current flow (forward bias), and the other junction has a battery connected in the opposite direction (reverse bias). If the current in the forward-biased junction is varied by the addition of a signal, the current in the reverse-biased junction of the transistor will vary accordingly. The principle can be used to construct amplifiers in which a small signal applied to the forward-biased junction causes a large change in current in the reverse-biased junction.

Another type of transistor is the field-effect transistor (FET). Such a transistor operates on the principle of repulsion or attraction of charges due to a superimposed electric field. Amplification of current is accomplished in a manner similar to the grid control of a vacuum tube. Field-effect transistors operate more efficiently than bipolar types, because a large signal can be controlled by a very small amount of energy.