Showing posts with label Astronomy. Show all posts
Showing posts with label Astronomy. Show all posts

Astronomy: Modern Techniques, Discoveries, and Theories

Astronomy was revolutionized in the second half of the 19th cent. by the introduction of techniques based on photography and spectroscopy. Interest shifted from determining the positions and distances of stars to studying their physical composition (see stellar structure and stellar evolution). The dark lines in the solar spectrum that had been observed by W. H. Wollaston and Joseph von Fraunhofer were interpreted in an elementary fashion by G. R. Kirchhoff on the basis of classical physics, although a complete explanation came only with the quantum theory. Between 1911 and 1913, Ejnar Hertzsprung and H. N. Russell studied the relation between the colors and luminosities of typical stars (see Hertzsprung-Russell diagram). With the construction of ever more powerful telescopes (see observatory), the boundaries of the known universe constantly increased. E. P. Hubble's study of the distant galaxies led him to conclude that the universe is expanding (see Hubble's law). Using Cepheid variables as distance indicators, Harlow Shapley determined the size and shape of our galaxy, the Milky Way. During World War II Walter Baade defined two "populations" of stars, and suggested that an examination of these different types might trace the spiral shape of our own galaxy (see stellar populations). In 1951 a Yerkes Observatory group led by William W. Morgan detected evidence of two spiral arms in the Milky Way galaxy.

Various rival theories of the origin and overall structure of the universe, e.g., the big bang and steady state theories, have been formulated (see cosmology). Albert Einstein's theory of relativity plays a central role in all modern cosmological theories. In 1963, the moon passed in front of the radio source 3C-273, allowing Cyril Hazard to calculate the exact position of the source. With this information, Maarten Schmidt photographed the object's spectrum using the 200-in. (5-m) reflector on Palomar Mt., then the world's largest telescope. He interpreted the result as coming from an object, now known as a quasar, at an extreme distance and receding from us at a substantial fraction of the speed of light. In 1967 Antony Hewish and Jocelyn Bell Burnell discovered a radio source a few hundred light years away featuring regular pulses at intervals of about 1 second with an accuracy of repetition of one-millionth of a second. This was the first discovered pulsar, a rapidly spinning neutron star emitting lighthouse-type beams of energy, the end result of the death of a star in a supernova explosion.

The discovery by Karl Jansky in 1931 that radio signals were emitted by celestial bodies initiated the science of radio astronomy. Most recently, the frontiers of astronomy have been expanded by space exploration. Perturbations and interference from the earth's atmosphere make space-based observations necessary for infrared, ultraviolet, gamma-ray, and X-ray astronomy. The Surveyor and Apollo spacecraft of the late 1960s and early 1970s helped launch the new field of astrogeology. A series of interplanetary probes, such as Mariner 2 (1962) and 5 (1967) to Venus, Mariner 4 (1965) and 6 (1969) to Mars, and Voyager 1 (1979) and 2 (1979), provided a wealth of data about Jupiter, Saturn, Uranus, and Neptune; more recently, the Magellan probe to Venus (1990) and the Galileo probe to Jupiter (1995) have continued this line of research (see satellite, artificial; space probe). The Hubble Space Telescope, launched in 1990, has made possible visual observations of a quality far exceeding those of earthbound instruments.

Development of Modern Astronomy

The Copernican Revolution

After the fall of Rome, European astronomy was largely dormant, but significant work was carried out by the Muslims and the Hindus. It was by way of Arabic translations that Greek astronomy reached medieval Europe. One of the great landmarks of the revival of learning in Europe was the publication (1543) by Nicolaus Copernicus (1473–1543) of his De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). According to the Copernican system, the earth rotates on its axis and, with all the other planets, revolves around the sun. The assertion that the earth is not the center of the universe was to have profound philosophical and religious consequences. Copernicus's principal claim for his new system was that it made calculations easier. He retained the uniform circular motion of the Ptolemaic system, but by placing the sun at the center, he was able to reduce the number of epicycles. Copernicus also determined the sidereal periods (time for one revolution around the sun) of the planets and their distance from the sun relative to the sun-earth distance (see astronomical unit).

Brahe and Kepler

The great astronomer Tycho Brahe (1546–1601) was principally an observer; a conservative in matters of theory, he rejected the notion that the earth moves. Under the patronage of King Frederick II, Tycho established Uraniborg, a superb observatory on the Danish island of Hveen. Over a period of 20 years (1576–97), he and his assistants compiled the most accurate and complete astronomical observations to that time. At his death his records passed to Johannes Kepler (1571–1630), who had been his last assistant. Kepler spent nearly a decade trying to fit Tycho's observations, particularly of Mars, into an improved system of heliocentric circular motion. At last, he conceived the idea that the orbit of Mars was an ellipse with the sun at one focus. This led him to the three laws of planetary motion that bear his name (see Kepler's laws).

Galileo's Telescope

Galileo Galilei (1564–1642) made fundamental discoveries in both astronomy and physics; he is perhaps best described as the founder of modern science. Galileo was the first to make astronomical use of the telescope. His discoveries of the four largest moons of Jupiter and the phases of Venus were persuasive evidence for the Copernican cosmology. His discoveries of craters on the moon and blemishes on the sun (sunspots) discredited the ancient belief in the perfection of the heavens. These findings were announced in The Sidereal Messenger, a small book published in 1610. Galileo's Dialogue on the Two Chief Systems of the World (1632) was an eloquent argument for the Copernican system over the Ptolemaic. However, Galileo was called before the Inquisition and forced to renounce publicly all doctrines considered contrary to Scripture.

Astrophysical Discoveries

Isaac Newton (1642–1727), possibly the greatest scientific genius of all time, succeeded in uniting the sciences of astronomy and physics. His laws of motion and theory of universal gravitation provided a physical, dynamic basis for the merely descriptive laws of Kepler. Until well into the 19th cent., all progress in astronomy was essentially an extension of Newton's work. Edmond Halley's prediction that the comet of 1682 would return in 1758 was refined by A. C. Clairault, who included the perturbing effects of Jupiter and Saturn on the orbit to calculate the nearly exact date of the return of the comet. In 1781, William Herschel accidentally discovered a new plane!t, eventually named Uranus. Discrepancies between the observed and theoretical orbits of Uranus indicated the existence of a still more distant planet that was affecting Uranus's motion. J. C. Adams and U. J. J. Leverrier independently calculated the position where the new planet, Neptune, was actually discovered (1846). Similar calculations for a large "Planet X" led in 1930 to the discovery of Pluto, now classed as a dwarf planet.

By the early 19th cent., the science of celestial mechanics had reached a highly developed state at the hands of Leonhard Euler, J. L. Lagrange, P. S. Laplace, and others. Powerful new mathematical techniques allowed solution of most of the remaining problems in classical gravitational theory as applied to the solar system. In 1801, Giuseppe Piazzi discovered Ceres, the first of many asteroids. When Ceres was lost to view, C. F. Gauss applied the advanced gravitational techniques to compute the position where the asteroid was subsequently rediscovered. In 1838, F. W. Bessel made the first measurement of the distance to a star; using the method of parallax with the earth's orbit as a baseline, he determined the distance of the star 61 Cygni to be 60 trillion mi (about 10 light-years), a figure later shown to be 40% too large.

Ancient Astronomy

Astronomy is the oldest of the physical sciences. In many early civilizations the regularity of celestial motions was recognized, and attempts were made to keep records and predict future events. The first practical function of astronomy was to provide a basis for the calendar, the units of month and year being determined by astronomical observations. Later, astronomy served in navigation and timekeeping. The Chinese had a working calendar as early as the 13th cent. B.C. About 350 B.C., Shih Shen prepared the earliest known star catalog, containing 800 entries. Ancient Chinese astronomy is best known today for its observations of comets and supernovas. The Babylonians, Assyrians, and Egyptians were also active in astronomy. The earliest astronomers were priests, and no attempt was made to separate astronomy from astrology. In fact, an early motivation for the detailed study of planetary positions was the preparation of horoscopes.

Greek Innovations

The highest development of astronomy in the ancient world came with the Greeks in the period from 600 B.C. to A.D. 400. The methods employed by the Greek astronomers were quite distinct from those of earlier civilizations, such as the Babylonian. The Babylonian approach was numerological and best suited for studying the complex lunar motions that were of overwhelming interest to the Mesopotamian peoples. The Greek approach, on the contrary, was geometric and schematic, best suited for complete cosmological models. Thales, an Ionian philosopher of the 6th cent. B.C., is credited with introducing geometrical ideas into astronomy. Pythagoras, about a hundred years later, imagined the universe as a series of concentric spheres in which each of the seven "wanderers" (the sun, the moon, and the five known planets) were embedded. Euxodus developed the idea of rotating spheres by introducing extra spheres for each of the planets to account for the observed complexities of their motions. This was the beginning of the Greek aim of providing a theory that would account for all observed phenomena. Aristotle (384–322 B.C.) summarized much of the Greek work before him and remained an absolute authority until late in the Middle Ages. Although his belief that the earth does not move retarded astronomical progress, he gave the correct explanation of lunar eclipses and a sound argument for the spherical shape of the earth.

The Alexandrian School and the Ptolemaic System

The apex of Greek astronomy was reached in the Hellenistic period by the Alexandrian school. Aristarchus (c.310–c.230 B.C.) determined the sizes and distances of the moon and sun relative to the earth and advocated a heliocentric (sun-centered) cosmology. Although there were errors in his assumptions, his approach was truly scientific; his work was the first serious attempt to make a scale model of the universe. The first accurate measurement of the actual (as opposed to relative) size of the earth was made by Eratosthenes (284–192 B.C.). His method was based on the angular difference in the sun's position at the high noon of the summer solstice in two cities whose distance apart was known.

The greatest astronomer of antiquity was Hipparchus (190–120 B.C.). He developed trigonometry and used it to determine astronomical distances from the observed angular positions of celestial bodies. He recognized that astronomy requires accurate and systematic observations extended over long time periods. He therefore made great use of old observations, comparing them to his own. Many of his observations, particularly of the planets, were intended for future astronomers. He devised a geocentric system of cycles and epicycles (a compounding of circular motions) to account for the movements of the sun and moon.

Ptolemy (A.D. 85–165) applied the scheme of epicycles to the planets as well. The resulting Ptolemaic system was a geometrical representation of the solar system that predicted the motions of the planets with considerable accuracy. Among his other achievements was an accurate measurement of the distance to the moon by a parallax technique. His 13-volume treatise, the Almagest, summarized much of ancient astronomical knowledge and, in many translations, was the definitive authority for the next 14 centuries.

Astronomy

Astronomy, study of the universe and the celestial bodies, gas, and dust within it. Astronomy includes observations and theories about the solar system, the stars, the galaxies, and the general structure of space. Astronomy also includes cosmology, the study of the universe and its past and future. People who study astronomy are called astronomers, and they use a wide variety of methods to perform their research. These methods usually involve ideas of physics, so most astronomers are also astrophysicists, and the terms astronomer and astrophysicist are basically identical. Some areas of astronomy also use techniques of chemistry, geology, and biology.

Professional astronomers usually have access to powerful telescopes, detectors, and computers. Most work in astronomy includes three parts, or phases. Astronomers first observe astronomical objects by guiding telescopes and instruments to collect the appropriate information. Astronomers then analyze the images and data. After the analysis, they compare their results with existing theories to determine whether their observations match with what theories predict, or whether the theories can be improved. Some astronomers work solely on observation and analysis, and some work solely on developing new theories.

Astronomy is such a broad topic that astronomers specialize in one or more parts of the field. For example, the study of the solar system is a different area of specialization than the study of stars. Astronomers who study our galaxy, the Milky Way, often use techniques different from those used by astronomers who study distant galaxies. Many planetary astronomers, such as scientists who study Mars, may have geology backgrounds and not consider themselves astronomers at all. Solar astronomers use different telescopes than nighttime astronomers use, because the Sun is so bright. Theoretical astronomers may never use telescopes at all. Instead, these astronomers use existing data or sometimes only previous theoretical results to develop and test theories. An increasing field of astronomy is computational astronomy, in which astronomers use computers to simulate astronomical events. Examples of events for which simulations are useful include the formation of the earliest galaxies of the universe or the explosion of a star to make a supernova.

Astronomers learn about astronomical objects by observing the energy they emit. These objects emit energy in the form of electromagnetic radiation. This radiation travels throughout the universe in the form of waves and can range from gamma rays, which have extremely short wavelengths, to visible light, to radio waves, which are very long. The entire range of these different wavelengths makes up the electromagnetic spectrum.

Astronomers gather different wavelengths of electromagnetic radiation depending on the objects that are being studied. The techniques of astronomy are often very different for studying different wavelengths. Conventional telescopes work only for visible light and the parts of the spectrum near visible light, such as the shortest infrared wavelengths and the longest ultraviolet wavelengths. Earth’s atmosphere complicates studies by absorbing many wavelengths of the electromagnetic spectrum. Gamma-ray astronomy, X-ray astronomy, infrared astronomy, ultraviolet astronomy, radio astronomy, visible-light astronomy, cosmic-ray astronomy, gravitational-wave astronomy, and neutrino astronomy all use different instruments and techniques.

learn more:

See also Planetary Science