Mechanics

Mechanics, branch of physics concerning the motions of objects and their response to forces. Modern descriptions of such behavior begin with a careful definition of such quantities as displacement (distance moved), time, velocity, acceleration, mass, and force. Until about 400 years ago, however, motion was explained from a very different point of view. For example, following the ideas of Greek philosopher and scientist Aristotle, scientists reasoned that a cannonball falls down because its natural position is in the earth; the sun, the moon, and the stars travel in circles around the earth because it is the nature of heavenly objects to travel in perfect circles.

The Italian physicist and astronomer Galileo brought together the ideas of other great thinkers of his time and began to analyze motion in terms of distance traveled from some starting position and the time that it took. He showed that the speed of falling objects increases steadily during the time of their fall. This acceleration is the same for heavy objects as for light ones, provided air friction (air resistance) is discounted. The English mathematician and physicist Sir Isaac Newton improved this analysis by defining force and mass and relating these to acceleration. For objects traveling at speeds close to the speed of light, Newton’s laws were superseded by Albert Einstein’s theory of relativity. For atomic and subatomic particles, Newton’s laws were superseded by quantum theory. For everyday phenomena, however, Newton’s three laws of motion remain the cornerstone of dynamics, which is the study of what causes motion.

Work is needed to give a system potential energy. It takes effort to lift a ball off the ground, stretch a rubber band, or force two magnets together. In fact, the amount of potential energy a system possesses is equal to the work done on the system. Potential energy also can be transformed into other forms of energy. For example, when a ball is held above the ground and released, the potential energy is transformed into kinetic energy.

Potential energy manifests itself in different ways. For example, electrically charged objects have potential energy as a result of their position in an electric field. An explosive substance has chemical potential energy that is transformed into heat, light, and kinetic energy when detonated. Nuclei in atoms have potential energy that is transformed into more useful forms of energy in nuclear power plants (see Nuclear Energy).

Comments

Popular posts from this blog

Berzelius, Jöns Jakob, Baron

Hanaoka Seishu

Mendel’s Laws