Posts

Showing posts from February, 2011

Lorentz contraction

Lorentz contraction (lôr`ĕnts), in physics, contraction or foreshortening of a moving body in the direction of its motion, proposed by H. A. Lorentz on theoretical grounds and based on an earlier suggestion by G. F. Fitzgerald; it is sometimes called the Fitzgerald, or Lorentz-Fitzgerald, contraction. The Lorentz contraction hypothesis was put forward in an attempt to explain the negative result of the Michelson-Morley experiment of 1887 designed to demonstrate the earth's absolute motion through space (see  ether ;  relativity ). The hypothesis held that any material body is contracted in the direction of its motion by a factor 1− v 2 / c 2 , where  v  is the velocity of the body and  c  is the velocity of light. Although the Lorentz contraction did not succeed entirely in reconciling the results of the Michelson-Morley experiment with classical theory, it did serve as the basis for the mathematics of Einstein's theory of relativity. The equations used in ...

Atomic clock

Atomic clock, electric or electronic timekeeping device that is controlled by atomic or molecular oscillations. A timekeeping device must contain or be connected to some apparatus that oscillates at a uniform rate to control the rate of movement of its hands or the rate of change of its digits. Mechanical clocks and watches use oscillating balance wheels, pendulums, and tuning forks. Much greater accuracy can be attained by using the oscillations of atoms or molecules. Because the frequency of such oscillations is so high, it is not possible to use them as a direct means of controlling a clock. Instead, the clock is controlled by a highly stable crystal oscillator whose output is automatically multiplied and compared with the frequency of the atomic system. Errors in the oscillator frequency are then automatically corrected. Time is usually displayed by an atomic clock with digital or other sophisticated readout devices. The first atomic clock, invented in 1948, utilized the vibration...

Astronomy: Modern Techniques, Discoveries, and Theories

Astronomy was revolutionized in the second half of the 19th cent. by the introduction of techniques based on photography and spectroscopy. Interest shifted from determining the positions and distances of stars to studying their physical composition (see stellar structure and stellar evolution ). The dark lines in the solar spectrum that had been observed by W. H. Wollaston and Joseph von Fraunhofer were interpreted in an elementary fashion by G. R. Kirchhoff on the basis of classical physics, although a complete explanation came only with the quantum theory . Between 1911 and 1913, Ejnar Hertzsprung and H. N. Russell studied the relation between the colors and luminosities of typical stars (see Hertzsprung-Russell diagram ). With the construction of ever more powerful telescopes (see observatory) , the boundaries of the known universe constantly increased. E. P. Hubble's study of the distant galaxies led him to conclude that the universe is expanding (see Hubble's law ). Usin...

Development of Modern Astronomy

The Copernican Revolution After the fall of Rome, European astronomy was largely dormant, but significant work was carried out by the Muslims and the Hindus. It was by way of Arabic translations that Greek astronomy reached medieval Europe. One of the great landmarks of the revival of learning in Europe was the publication (1543) by Nicolaus Copernicus (1473–1543) of his De revolutionibus orbium coelestium (On the Revolutions of the Celestial Spheres). According to the Copernican system , the earth rotates on its axis and, with all the other planets, revolves around the sun. The assertion that the earth is not the center of the universe was to have profound philosophical and religious consequences. Copernicus's principal claim for his new system was that it made calculations easier. He retained the uniform circular motion of the Ptolemaic system, but by placing the sun at the center, he was able to reduce the number of epicycles. Copernicus also determined the sidereal periods (t...

Ancient Astronomy

Astronomy is the oldest of the physical sciences. In many early civilizations the regularity of celestial motions was recognized, and attempts were made to keep records and predict future events. The first practical function of astronomy was to provide a basis for the calendar , the units of month and year being determined by astronomical observations. Later, astronomy served in navigation and timekeeping. The Chinese had a working calendar as early as the 13th cent. B.C. About 350 B.C., Shih Shen prepared the earliest known star catalog, containing 800 entries. Ancient Chinese astronomy is best known today for its observations of comets and supernovas . The Babylonians, Assyrians, and Egyptians were also active in astronomy. The earliest astronomers were priests, and no attempt was made to separate astronomy from astrology . In fact, an early motivation for the detailed study of planetary positions was the preparation of horoscopes. Greek Innovations The highest development of astr...

space shuttle

Space shuttle, reusable U.S. space vehicle. Developed by the National Aeronautics and Space Administration (NASA), it consists of a winged orbiter, two solid-rocket boosters, and an external tank. As with previous spacecraft, the shuttle is launched from a vertical position. Liftoff thrust is derived from the orbiter's three main liquid-propellant engines and the boosters. After 2 min the boosters use up their fuel, separate from the spacecraft, and—after deployment of parachutes—are recovered following splashdown. After about 8 min of flight, the orbiter's main engines shut down; the external tank is then jettisoned and burns up as it reenters the atmosphere. The orbiter meanwhile enters orbit after a short burn of its two small Orbiting Maneuvering System (OMS) engines. To return to earth, the orbiter turns around, fires its OMS engines to reduce speed, and, after descending through the atmosphere, lands like a glider. Five different orbiters—Columbia, Challenger, Atlantis, D...

Development of Rockets

The invention of the rocket is generally ascribed to the Chinese, who as early as A.D. 1000 stuffed gunpowder into sections of bamboo tubing to make military weapons of considerable effectiveness. The 13th-century English monk Roger Bacon introduced to Europe an improved form of gunpowder, which enabled rockets to become incendiary projectiles with a relatively long range. Rockets subsequently became a common if unreliable weapon. Major progress in design resulted from the work of William Congreve, an English artillery expert, who built a 20-lb (9-kg) rocket capable of traveling up to 2 mi (3 km). In the late 19th cent., the Austrian physicist Ernst Mach gave serious theoretical consideration to supersonic speeds and predicted the shock wave that causes sonic boom. The astronautical use of rockets was cogently argued in the beginning of the 20th cent. by the Russian Konstantin E. Tsiolkovsky , who is sometimes called the "father of astronautics." He pointed out that a rock...

rocket

Rocket, any vehicle propelled by ejection of the gases produced by combustion of self-contained propellants. Rockets are used in fireworks, as military weapons, and in scientific applications such as space exploration. Rocket Propulsion The force acting on a rocket, called its thrust, is equal to the mass ejected per second times the velocity of the expelled gases. This force can be understood in terms of Newton's third law of motion, which states that for every action there is an equal and opposite reaction. In the case of a rocket, the action is the backward-streaming flow of gas and the reaction is the forward motion of the rocket. Another way of understanding rocket propulsion is to realize that tremendous pressure is exerted on the walls of the combustion chamber except where the gas exits at the rear; the resulting unbalanced force on the front interior wall of the chamber pushes the rocket forward. A common misconception, before space exploration pointed up its obvious fal...

Photochemistry

Photochemistry, study of chemical processes that are accompanied by or catalyzed by the emission or absorption of visible light or ultraviolet radiation. A molecule in its ground (unexcited) state can absorb a quantum of light energy, or photon, and go to a higher-energy state, or excited state (see quantum theory). Such a molecule is then much more reactive than a ground-state molecule and can undergo entirely different reactions than the more stable molecule, following several different reaction pathways. One possibility is that it can simply emit the absorbed light and fall back to the ground state. This process, called chemiluminescence, is illustrated by various glow-in-the-dark objects. Another possibility is for the molecule to take part in a photo-induced chemical reaction; it may break apart (photodissociate), rearrange, isomerize, dimerize, eliminate or add small molecules, or even transfer its energy to another molecule. Photochromic compounds—compounds that change color rev...

Aerosol dispenser

Aerosol dispenser, device designed to produce a fine spray of liquid or solid particles that can be suspended in a gas such as the atmosphere. The dispenser commonly consists of a container that holds under pressure the substance to be dispersed (e.g., paints, insecticides, medications, and hair sprays) and a liquefied gas propellant. When a valve is released, the propellant forces the substance through an atomizer and out of the dispenser in the form of a fine spray. These devices are more properly termed spray dispensers rather than aerosol dispensers because the particles of the dispersed substance are usually larger than the particles of a true aerosol (see colloid), such as a fog or a smoke. Freon was the most common aerosol propellant, but its use has been banned because it is believed to contribute to destruction of the ozone layer of the stratosphere; common propellants now include propane, butane, and other hydrocarbons.

chronometer

Chronometer, mechanical timekeeping device of great accuracy, particularly one used for determining longitude (see latitude and longitude ) at sea. Early weight- and pendulum-driven clocks were inaccurate because of friction and temperature changes and could not be used at sea because of the ship's motion. In 1735 John Harrison invented and constructed the first of four practical marine timekeepers. The modern marine chronometer is suspended to remain horizontal whatever the inclination of the ship and differs in parts of its mechanism from the ordinary watch. A chronometer may provide timekeeping accurate to within 0.1 second per day. See also Ferdinand Berthoud.

Electrocardiography

Electrocardiography (ĭlĕk'trōkärdēŏg`rəfē), science of recording and interpreting the electrical activity that precedes and is a measure of the action of heart muscles. Since 1887, when Augustus Waller demonstrated the possibility of measuring such action, physicians and physiologists have recorded it in order to study the heart's normal behavior and to provide a method for diagnosing abnormalities. Electrical current associated with contraction of the heart muscles passes through the various tissues and reaches the surface of the body. What is actually recorded is the change in electrical potential on the body surface. The first practical device for recording the activity of the heart was the string galvanometer developed by William Einthoven in 1903. In this device a fine quartz string is suspended vertically between the poles of a magnet. The string is deflected in response to changes in electrical potential and its movement can be optically enlarged and photographed, or, if...

nutation

Nutation, in astronomy, a slight wobbling motion of the earth's axis. The causes of nutation are similar to those of the precession of the equinoxes , involving the varying attraction of the moon on the earth's equatorial bulge. However, the period of the motion is only 18.6 years, the same as that of the precession of the moon's nodes, as opposed to the nearly 26,000-year period of the precession of the equinoxes. Nutation was discovered by the English astronomer James Bradley in 1728 but was not explained until 20 years later.