The Elements through the Ages

Some elements have been known since antiquity. Gold ornaments from the Neolithic period have been discovered. Gold, iron, copper, lead, silver, and tin were used in Egypt and Mesopotamia before 3000 B.C. However, recognition of these metals as chemical elements did not occur until modern times.

Greek Concept of the Elements

The Greek philosophers proposed that there are basic substances from which all things are made. Empedocles proposed four basic "roots," earth, air, fire, and water, and two forces, harmony and discord, joining and separating them. Plato called the roots stoicheia (elements). He thought that they assume geometric forms and are made up of some more basic but undefined matter. A different theory, that of Leucippus and his followers, held that all matter is made up of tiny indivisible particles (atomos).

This theory was rejected by Aristotle, who expanded on Plato's theory. Aristotle believed that different forms (eidos) were assumed by a basic material, which he called hulé. The hulé had four basic properties, hotness, coldness, dryness, and moistness. The four elements differ in their embodiment of these properties; fire is hot and dry, earth cold and dry, water cold and moist, and air hot and moist. Although Aristotle proposed that an element is "one of those simple bodies into which other bodies can be decomposed and which itself is not capable of being divided into others," he thought the metals to be made of water, and called mercury "silver water" (chutos arguros). His idea that matter was a single basic substance that assumed different forms led to attempts by the alchemists to transmute other metals into gold.

Evolution of Modern Concepts

Although much early work was done in chemistry, especially with metals, and many recipes were recorded, there were few developments in the conception of the elements. In the 16th cent. Paracelsus proposed salt, mercury, and sulfur as three "principles" of which bodies were made, although he apparently also believed in the four "elements." Van Helmont (c.1600) rejected the four elements and three principles, substituting two elements, air and water.

Robert Boyle rejected these early theories and proposed a definition of chemical elements that led to the currently accepted definition. His definition is strikingly similar to Aristotle's earlier definition. In The Sceptical Chymist (1661) Boyle wrote, "I now mean by elements … certain primitive and simple, or perfectly unmingled bodies; which not being made of any other bodies, or of one another, are the ingredients of which all those called perfectly mixed bodies [chemical compounds] are immediately compounded, and into which they are ultimately resolved."

Whereas Aristotle and other early philosophers tried to determine the identity of the elements solely by reason, Boyle and later scientists used the results of numerous experiments to identify the elements. In 1789 Antoine Lavoisier published a list of chemical elements based on Boyle's definition; this encouraged adoption of standard names for the elements. Although some of his elements are now known to be compounds, such as metallic oxides and salts, they were at the time accepted as elements since they could not be decomposed by any method then known.

In 1803 John Dalton proposed (as part of his atomic theory) that all atoms of an element have identical properties (including mass), that these atoms are unchanged by chemical action, and that atoms of different elements react with one another in simple proportions. Although symbols for some of the elements already existed, they were by no means universally accepted, and each compound also had a unique symbol that was unrelated to its chemical composition. Dalton devised a new set of circular symbols for the elements and used a combination of elemental symbols to represent a compound. For example, his symbol for oxygen was ○, and for hydrogen ȯ. Since he thought water contained one atom of hydrogen for every atom of oxygen, he formed the symbol for water by writing the symbols for hydrogen and oxygen touching one another, ȯ&nosp;○. J. J. Berzelius was the first to use the modern method, letting one or two letters of the element's name serve as its symbol. He also published an early table of atomic weights of 24 elements with most values very close to those now in use.

Discovery of the Elements

As noted above, some of the elements were discovered in prehistoric times but were not recognized as elements. Arsenic was discovered around 1250 by Albertus Magnus, and phosphorus was discovered about 1674 by Hennig Brand, an alchemist, who prepared it by distilling human urine. Only 12 elements were known before 1700, and only about twice that many by 1800, but by 1900 over 80 elements had been identified. In 1919 Ernest Rutherford found that hydrogen was given off when nitrogen was bombarded with alpha particles. This first transmutation encouraged further study of nuclear reactions, and eventually led to the discovery in 1937 of technetium, the first synthetic element. Neptunium (atomic number 93) was the first transuranium element to be synthesized (1940). Its discovery prompted the search that led to the discovery of other transuranium elements.

spectroscope

Spectroscope, optical instrument for producing spectral lines and measuring their wavelengths and intensities, used in spectral analysis (see spectrum). When a material is heated to incandescence it emits light that is characteristic of the atomic makeup of the material. In the original spectroscope design in the early 19th cent., light entered a slit and a collimating lens transformed the light into a thin beam of parallel rays. A prism then separated the beam into its spectrum. The observer then viewed the spectrum through a tube with a scale that was transposed up the spectrum image, enabling its direct measurement. With the development of photographic film, the more accurate spectrograph was developed. It was based on the same principle as the spectroscope, but it had a camera in place of the telescope. In recent years the electronic circuits built around the photomultiplier tube have replaced the camera, allowing real-time spectrographic analysis of far greater accuracy. Such spectrum analysis, or spectroscopy, has become an important scientific tool for analyzing the composition of unknown material. It has found applications in fields as disparate as astronomy and forensic chemistry.

Modern Agriculture

In the N and W United States the era of mechanized agriculture began with the invention of such farm machines as the reaper, the cultivator, the thresher, and the combine. Other revolutionary innovations, e.g., the tractor, continued to appear over the years, leading to a new type of large-scale agriculture. Modern science has also revolutionized food processing; refrigeration, for example, has made possible the large meatpacking plants and shipment and packaging of perishable foods. Urbanization has fostered the specialties of market gardening and truck farming. Harvesting operations (see harvester) have been mechanized for almost every plant product grown. Breeding programs have developed highly specialized animal, plant, and poultry varieties, thus increasing production efficiency. The development of genetic engineering has given rise to genetically modified transgenic crops and, to a lesser degree, livestock that possess a gene from an unrelated species that confers a desired quality. Such modification allows livestock to be used as "factories" for the production of growth hormone and other substances (see pharming). In the United States and other leading food-producing nations agricultural colleges and government agencies attempt to increase output by disseminating knowledge of improved agricultural practices, by the release of new plant and animal types, and by continuous intensive research into basic and applied scientific principles relating to agricultural production and economics.

These changes have, of course, given new aspects to agricultural policies. In the United States and other developed nations, the family farm is disappearing, as industrialized farms, which are organized according to industrial management techniques, can more efficiently and economically adapt to new and ever-improving technology, specialization of crops, and the volatility of farm prices in a global economy. Niche farming, in which specialized crops are raised for a specialized market, e.g., heirloom tomatoes or exotic herbs sold to gourmet food shops and restaurants, revived or encouraged some smaller farms in the latter 20th and early 21st cents., but did little to stop the overall decrease in family farms. In Third World countries, where small farms, using rudimentary techniques, still predominate, the international market has had less effect on the internal economy and the supply of food.

Most of the governments of the world face their own type of farm problem, and the attempted solutions vary as much as does agriculture itself. The modern world includes areas where specialization and conservation have been highly refined, such as Denmark, as well as areas such as N Brazil and parts of Africa, where forest peoples still employ "slash-and-burn" agriculture—cutting down and burning trees, exhausting the ash-enriched soil, and then moving to a new area. In other regions, notably SE Asia, dense population and very small holdings necessitate intensive cultivation, using people and animals but few machines; here the yield is low in relation to energy expenditure. In many countries extensive government programs control the planning, financing, and regulation of agriculture. Agriculture is still the occupation of almost 50% of the world's population, but the numbers vary from less than 3% in industrialized countries to over 60% in Third World countries.

Bibliography:
See R. Jager, The Fate of Family Farming (2004).

The Rise of Commercial Agriculture

As the Middle Ages waned, increasing communications, the commercial revolution, and the rise of cities in Western Europe tended to turn agriculture away from subsistence farming toward the growing of crops for sale outside the community (commercial agriculture). In Britain the practice of inclosure allowed landlords to set aside plots of land, formerly subject to common rights, for intensive cropping or fenced pasturage, leading to efficient production of single crops.

In the 16th and 17th cent. horticulture was greatly developed and contributed to the so-called agricultural revolution. Exploration and intercontinental trade, as well as scientific investigation, led to the development of horticultural knowledge of various crops and the exchange of farming methods and products, such as the potato, which was introduced from America along with beans and corn (maize) and became almost as common in N Europe as rice is in SE Asia.

The appearance of mechanical devices such as the sugar mill and Eli Whitney's cotton gin helped to support the system of large plantations based on a single crop. The Industrial Revolution after the late 18th cent. swelled the population of towns and cities and increasingly forced agriculture into greater integration with general economic and financial patterns. In the American colonies the independent, more or less self-sufficient family farm became the norm in the North, while the plantation, using slave labor, was dominant (although not universal) in the South. The free farm pushed westward with the frontier.

Bibliography:
See R. Jager, The Fate of Family Farming (2004).

Agriculture

Agriculture, science and practice of producing crops and livestock from the natural resources of the earth. The primary aim of agriculture is to cause the land to produce more abundantly and at the same time to protect it from deterioration and misuse. The diverse branches of modern agriculture include agronomy, horticulture, economic entomology, animal husbandry, dairying, agricultural engineering, soil chemistry, and agricultural economics.

Early Agriculture

Early people depended for their survival on hunting, fishing, and food gathering. To this day, some groups still pursue this simple way of life, and others have continued as roving herders (see nomad). However, as various groups of people undertook deliberate cultivation of wild plants and domestication of wild animals, agriculture came into being. Cultivation of crops—notably grains such as wheat, rice, corn, rye, barley, and millet—encouraged settlement of stable farm communities, some of which grew to be towns and city-states in various parts of the world. Early agricultural implements—the digging stick, the hoe, the scythe, and the plow—developed slowly over the centuries, each innovation (e.g., the introduction of iron) causing profound changes in human life. From early times, too, people created ingenious systems of irrigation to control water supply, especially in semiarid areas and regions of periodic rainfall, e.g., the Middle East, the American Southwest and Mexico, the Nile Valley, and S Asia.

Farming was often intimately associated with landholding (see tenure) and therefore with political organization. Growth of large estates involved the use of slaves (see slavery) and bound or semifree labor. In the Western Middle Ages the manorial system was the typical organization of more or less isolated units and determined the nature of the agricultural village. In Asia large holdings by the nobles, partly arising from feudalism (especially in China and Japan), produced a similar pattern.

related artucles:
Bibliography:
See R. Jager, The Fate of Family Farming (2004).